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Abstract-In this paper, turbulent heat and momentum transfer for a fluid forced through a vertical tube 
is considered. First, the authors study a shearing-stress distribution in a tube, by taking the buoyancy force 
and also the inertia force due to acceleration into consideration. It is proved that the effects of both 
forces operate quite similarly and result in a very rapid decrease of the shearing stress near the wall. By 
considering how the velocity profde depends upon the shearing-stress gradient at the wall, the authors 
deduce the criteria for the prominent effects of buoyancy and acceleration. Second, by assuming that the 
turbulent boundary layer is constructed by the superposition of the locally developed layers, the authors 
propose an approximate theory to calculate velocity and temperature profiles under the large effects of 
buoyancy and acceleration. Thirdly, based on the above theory, a criterion of the reverse transition from 

turbulent to laminar flow is proposed. 

G, mass velocity; 

Gr, Grashof number 

NOMENCLATURE 

conversion factor of heat for 
work; 
specific heat at constant pressure; 
tube diameter; 
friction coefficient 
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Grashof number for acceleration % 

= %&h,tldxKy,,,ldyf)d3 . ^ v; 
acceleration of gravity; 

Re*, 

1267 

heat-transfer coefficient; 
total enthalpy flow rate; 
enthalpy ; 
dimensionless acceleration para- 
meter = (v/u~)(du,/dx); 
tube length; 
Mach number; 
Nusselt number = hd/l,; 

Prandtl number = V/K; 
Prandtl number at 

T’ = (Tm + T,)/‘Z 
turbulent Prandtl number = E,,,/E~; 
pressure; 
heat flux; 
tube radius; gas constant; 
Reynolds number = u,d/vr; 
a kind of Reynolds number 

=y:,,; 
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SLw, SgO’ 

SO, sg, quantities having a dimension of 
shearing stress, defined by equa- 
tions (4), (5), (8) and (9); 

IT; absolute temperature; 

AT wall to bulk temperature dif- 
ference=Tw-Tm=t,,,-t,,,=At; 

t, temperature; time; 

u, axial velocity; 
u+, u+ +, u*, dimensionless velocity parameter, 

defined by equations (67), (71) 
and (77); 

V, specific volume; 

I% mass flow rate; 

X, axial distance; 

Y, distance from wall; 

y+,y++, y*, dimensionless distance para- 
meter, defined by equations (67), 
(71) and (75); 

Y,=O> value of y at which r vanishes 
when extrapolated according to 
the gradient at the wall. 

9, refers to gravity; 
m, refers to bulk fluid condition: 
w, refers to wall. 

1. INTRODUCTION 

Greek symbols 

A 
PY 
V, 

r, 

Subscripts 
a, 
au, 
L 

specific weight; 
dimensionless shearing-stress 
gradient, defined by equation 

(97); 
laminar-sublayer thickness; 
thermal boundary-layer thick- 
ness; 
eddy diffusivity for momentum; 
eddy diffusivity for heat; 
thermal diffusivity; ratio of speci- 
fic heat; 
thermal conductivity; 
dynamic viscosity; 
kinematic viscosity; 
shearing stress. 

THE AUTHORS have been studying forced turbu- 
lent convection heat transfer to supercritical 
fluids flowing in circular tubes in recent years 
[l, 23. A supercritical fluid shows very large 
volume change near its critical temperature, and 
has considerably small kinematic viscosity. 
Grashof numbers will thus get very large in 
experiments of heat transfer to supercritical 
fluids. There arises a question how large 
Reynolds numbers have to be produced in an 
experiment in order to make the influence of 
buoyancy force ineffective. Many literatures 
[3-81 are available concerning combined free 
and forced flow in vertical circular tubes. Most 
of them, however, deal with the laminar flow 
region where usual cases fall, and only a few 
deal with the turbulent flow region. Moreover, 
the above mentioned problem of distinction 
between forced and free turbulent convection 
regimes is discussed only by Eckert et al. [3, 61. 

4, 
4 

E m’ 

E 
t’ 

K, 

Further, in regard to the heat transfer to 
supercritical fluids in tubes, fluid flow may be 
considerably accelerated owing to its thermal 
expansion, especially when heated strongly. 
There arises another question how the inertia 
force due to acceleration affects the heat-transfer 
condition. Other than the case of heat transfer 
to supercritical fluids, several experiments [9-151 
have been performed on turbulent heat and 
momentum transfer for gases in circular tubes 
at very high wall to bulk temperature ratios, in 
connection with gas-cooled nuclear reactors 
and rocket propulsion systems. With respect to 
these experiments, McEligot et al. [16] recently 
discussed the effect of inertia force on the 
momentum balance in turbulent boundary 
layer. 

refers to acceleration; 
values averaged over tube length; 
values at film temperature Tf = 
(T, + Tw)/2; reference values bet- 
ween y = 0 and y = y; refers to 
friction; 

In the following section, the authors will 
study a shearing-stress distribution in a tube, by 
taking the buoyancy force and also the inertia 
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force due to acceleration into consideration. It 
will be proved that both forces yield a quite 
similar effect and result in a very rapid decrease 
of shearing stress near the wall. In Section 3, 
by considering how the velocity profile depends 
upon the shearing-stress gradient near the wall, 
criteria for the predominant effects of buoyancy 
and acceleration will be deduced. In Section 4, 
by assuming that the turbulent boundary layer 
is constructed by the superposition of the locally 
developed layers, an approximate theory to 
calculate velocity and temperature profiles 
under the large effects of buoyancy and accelera- 
tion will be proposed. Based on this approximate 
theory, a reverse transition from turbulent to 
laminar flow, which has attracted increasing 
interest in recent years, will be discussed in the 
last part of Section 4. 

2. SHEARING-STRESS DISTRIBUTIONS IN TUBES 

Heat transfer for a fluid flowing in a vertically 
placed circular tube of radius R is now con- 
sidered. The momentum equation will be derived 
for the annular section between radii R and R - y 

(y indicates the distance from the wall surface). 
In this place, regarding the axial momentum 
change due to acceleration (deceleration, in 
case of cooling), the condition of ‘quasi- 
developed’ flow may be intuitively assumed. 
Namely, the velocity profile may be accelerated 
in a uniform proportion: more strictly, (l/u) 
(DuDx) + const.(y) = (l/u,) (du,ldx) (where 
D/Dx indicates the derivative along the stream- 
line). The axial momentum change term is then 
given as 

’ Du s Y 

; YDt2n(R-rj)dq=i 
9 s 

yu ; 2n(R - rj) dq 

0 0 

Y 

& A 1 !!f!! 

’ g urn dx s 

yu224R - q) &,. 
(1) 

0 

The momentum equation is expressed by 

1 1 du,,, ’ 

g a,,, dx s 
yu227r(R - q)dq 

0 

=- n{R2 - (R - y)‘} 2 T ’ y274R - 4 dtt s 
0 

-2rcRr,,, + 27c(R - y)s (2) 

where for the sign of the second term on the 
right-hand side we use either the - or the + 
sign according as the flow direction is upward 
or downward. By setting y = R in equation (2), 
we obtain the momentum equation for the whole 
tube, which determines the pressure gradient 
dp/d.x as 

R 

-nR2* = ~~!!% 
dx gu,,, dx s 

yU22+ _ ?)drl 

0 

R 

+ 
s 

y2n(R - rj)drj + 2nRrW. (3) 

0 

Obviously, the pressure drop consists of three 
terms, which are caused, in turn, by the accelera- 
tion, the gravity and the wall friction. For 
brevity, we write the first and the second terms 
on the right-hand side of equation 13) as 

R 

2nRSa0 = 1 ._k!% 
g a,,, dx s 

yu227r(R - q) dq, (4) 

0 

2rrRS,, z 7 y27r(R - q) dq 
0 

(5) 

where S, and S, denote the equivalent shearing 
stresses at the wall that might be assigned if the 
pressure drops due to acceleration and gravity 
were attributed to the wall friction. Equations 
(4) and (5) are evaluated approximately as 

ies _I!!!!, !!!?!R .- (loN 29 “dx ’ 
(6) 

2nRSg0 z ny,,,R’, i.e. S,, N $ y,R. (7) 

Similarly, the acceleration and the gravity terms 
in equation (2) may be written as 
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Y 

2nRSII = ; + 2 
s 

yu227c(R - r/) dv/, (8) + 
R-Y 
7 TN,. (14) 

m 
0 

2rrRSS E j y27r(R - r]) dv 

Very near the wall, (t$/u$ + 1. Therefore, 

(9) 
0 

r=tO+rq+r 

which are evaluated approximately as = - 2~S~0~~(l-~)~s~0 + (1 -+ 

27rRS, 2: n;+%+u;{R’ - (R - y)‘}, (10) = rw 
m 

_{2SG0&2(1 -:)sgO+ r$. (15) 

27cRSg N ny,{R2 - (R - y)“} (11) It is noticeable that r decreases near the wall 
according to the gradient 

where the subscript f’ denotes the reference 
values between y = 0 and y = y. By substituting 
for dp/dx from equation (3) into equation (2) 

-{2%&(1 -$gO+ r_}, 

and by using equations (4), (5), (8) and (9), the when the distance from the wall is normalized 
shearing stress z at ~1 is determined as as y/R. On the other hand, the state of r near 

R R-Y 
the tube centre is easily verified to be in pro- 

r=rO+rg+rJE - --~ 
i C R-y J 

S 
R a’ 

portion to radius r, by deriving the momentum 
equation about the volume inside the radius r, 

> 

which is quite similar to equation (3). As a whole, 

S the distribution of r will be such as illustrated 
go in Figs. 7 and 9. 

R 
+- 

R-Y 
Sg 

R-Y 
+ 7 su’ (12) 

where rO, .r4 and r 
f 

represent the components 
which originate rom the acceleration, the 
gravity and the wall friction respectively. 

We now inquire into the state of z near the 
wall. From equations (6), (7), (10) and (1 l), 

$+;{1 -(RRIy)2}. (13) 

By substituting these into equation (12), 

7 = To + rg + r, 

3. CRITERIA FOR THE EFFECTS OF BUOYANCY 

AND ACCELERATION 

3.1 Basic considerations 
For the present, we assume a state of turbulent 

convection. At first, we presume a state where 
the effects of acceleration and gravity might be 
neglected. Then the distribution of shearing 
stress r is linear as usual case, and r is propor- 
tional to r. Here, the variation of fluid properties 
near the wall should be taken into consideration. 
The conditions of the turbulent boundary layer 
near the wall may be virtually determined by 
the reference properties in the boundary layer 
and by the velocity just outside the boundary 
layer. Therefore, various formulas for heat and 
momentum transfer in the case of constant 
fluid properties may be applied to that of 
varying properties as a rough approximation, 
by setting as follows for Reynolds number, 
friction coefficient, Prandtl number and Nusselt 
number respectively : 
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prf = v//“f, Nu = hd/l/ (16) 
where the subscript f denotes the property 
values at the reference temperature tr = (t, + tJ2. 
It will be known that this approximation is 
based on the theory of turbulent convection in 
case of varying properties which has been 
developed by the authors concerning the heat 
transfer to supercritical fluids [ 1,2]. (The theory 
will be extended in the succeeding chapter.) 
Formerly, Humble et al. [17] measured heat- 
transfer and friction coefficients for air in tubes 
at wall to bulk temperature ratios Tw/Tm to 2.5, 
and concluded that the experimental results 
could be fairly correlated by Dittus-Boelter’s 
formula and Karman-Nikuradse’s formula by 
using the dimensionless numbers defined in 
equations (16). Later, Taylor [9, 11, 121 per- 
formed experiments for hydrogen and helium 
at wall to bulk temperature ratios TJT, up to 
8.0, and came up to the conclusion that according 
as TJT, got high the above method of correla- 
tion became unsatisfactory especially as for the 
friction coefficients. These very deviations have 
to be attributed to the effect of acceleration, and 
will become clear in the following. Now we 
assume the turbulent boundary-layer model 
consisting of two layers [18], and assume for 
the thickness 6, of the laminar sublayer that 

6: E J(gThf’S 
1 
= 12.26. 

v/ 
By using Blasius’ formula: 4f = 0.3164 Ret, 
the wall friction t,,, is estimated as 

0.3164 u d -+a 
Tw =f+gu; =y-- 7 

( > 

z 
g urn. (17) 

Therefore, the proportion of 6r to R is 

3 = 12.26 
V 

R 

= 123 
(18) 

. 

The actual shearing-stresshistribution under 
the influences of buoyancy and acceleration is 
expressed by equation (15). For the sake of 
brevity, we assume the case of upward heated 
flow, where all the terms in ( } of equation (15) 
are positive. If we extrapolate the value of r 
linearly according to the gradient near the wall, 
z may vanish at yX=, determined by 

y*=o _ t 
w 

- - 

R 
2s,, + 2 1 - F sgO + tw 

( > m 
i 

= 

&+2 l-If L+l. 
(19) 

T w ( > Ynl Tw 

We presumed at the beginning the state where 
the effects of acceleration and gravity were 
neglected. Here we examine whether the velocity 
profile determined from that assumption (where 
r is almost constant near the wall) is consistent 
with the actual shearing-stress distribution 
expressed by equation (15). Keeping in mind that 
the mean velocity (in consequence, the flow 
rate) is virtually determined by the velocity 
profile (accordingly, by the shearing-stress distri- 
bution) in the laminar sublayer, if zyCo 9 6,, the 
wall friction and the velocity profile presumed 
at the beginning almost agree with the actual 
ones, although the actual shearing-stress distri- 
bution may considerably differ from the pre- 
sumed one especially at a distance from the wall. 
On the other hand, if yzCo < 6,, the velocity 
profile presumed at the beginning is entirely 
inconsistent with the actual shearing-stress 
distribution. By comparing the case where 
r = const. = t in the laminar sublayer with 
the case wheri r decreases linearly from the 
same rw at the wall to zero at the border, it will 
easily be shown that the velocity just outside 
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the laminar sublayer in the former case is two 
times as large as that in the latter case, on the 
assumption that the thickness of the laminar 

(l-:)+(1 ;-) 

sublayer remains unchanged. Therefore, the y,d 
actual wall friction may well exceed the presumed 4 
one in order that the given flow rate might be 
forced through. From the above considerations, 
the criterion for the prominent effects of buoy- 
ancy and acceleration is given as 

Yr=, G 6,. (*‘) 

This is rewritten by using equations (18) and (19) 
as where 

1 
. (21) 

When Re = 5000, 20000, the right-hand side of 
equation (21) amounts to 6JR = &. & respec- 
tively. Therefore, when the condition (21) is 
fulfilled, the unity in the denominator on the 
left-hand side may be neglected. As a result, the 
basic condition to discriminate the large effects 
of buoyancy and acceleration in case of upward 
heated flow is written as 

1 
(22) 

From equations (3)-(5), rw is in proportion to 
the pressure drop Aps due to the wall friction, 
and so are Sm and SW to Ap0 due to the accelera- 
tion and to Ap, due to the gravity respectively. 
Accordingly, in equation (22), 

g ynl - yf d3 

Gr z ‘.‘z 
V, 

(26) 

is a Grashof number. Substituting equation (25) 
into equation (24), we obtain 

Rey < 1.55 x lo3 Gr (27) 

for the condition to discriminate the large effect 
of buoyancy in case of upward heated flow. 

In the above discussions, we have considered 
mainly from the standpoint with respect to the 
momentum boundary layer (otherwise, on the 
assumption that the thermal boundary layer is 
thicker than the momentum boundary layer). 
So Prandtl number does not appear in the 
resulting equation (27). The proportion of the 
thickness of the thermal boundary layer to that 
of the momentum boundary layer is estimated 
roughly as S,/6r 2: Pr-’ 4. (Refer to equation 
(42).) When Pr > 1 and 6, < ci,. it seems more 

S 
ao AP =-.A Lo_% 
z 

w A$ r,,, - 4~~’ 
3.2 Criteria for the buoyancy effect 

First, we inquire into the simple 
effect. From equation (22), 

1 

From equations (7) and (17), 

(23) 
reasonable to adopt 

Y,=o G d,(< 6,) (28) 

buoyancy 
in place of equation (20). From the definition, 
yZZo merely means the point where r might 
vanish by extrapolation according to the gradient 

_J 

(24) 
of r at the wall. On the other hand, equation (28) 
ensures that the extrapolated point YZ=, exists 
inside the thermal boundary layer so that the 
shearing stress may actually decrease to zero 
near the wall. According to the above considera- 
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tion, we obtain by multiplying the right-hand The acceleration factor u,,,(du,Jdx) in equation 
side of equation (24) by Pr ,_-o’4 and rearranging (32) is related to the heat flux 4, as follows. Since 

Rev < 1.55 x lo3 Gr Prr ‘o’4 (for Pr, > 1) (29) 
the cross-section of the tube and the flow rate 
are constant. we obtain from the condition of 

in place of equation (27). continuity 

3.3 Criteria for the acceleration effect 
Next, we inquire into the simple acceleration 

effect due to thermal expansion. From equation 

(22) 
1 u,d -; 

2(&&J s 123 y ( > * 
(30) 

From equations (6) and (17), we obtain in the 
same way as equation (25) was derived 

Since u,(du,/dx) is a mean acceleration in x 
direction, 

1 du 1 dv _m = _A* 
urn dx v,,, dx 

(34) 

If only the volume change owing to thermal 
expansion under constant pressure is considered 
(in the Appendix, we consider the case of high 
velocity flow where the volume change due to 
pressure drop plays an important role), 

(35) 

Whence, 

u d”“lY”,d3 
Gr, E 

m dx yr 
du,,, dv 

v; 
(32) 

““dx= di m d (-> 

4qwuI* (36) 

For the particular case of a perfect gas, 
is a Grashof number representing the accelera- 
tion effect. Substituting equation (31) into du, vnl 4%JL. 

““dx = cp,Tm d 
(37) 

equation (30), we obtain 

Re y Q 1.55 x lo3 Gr. 
Further, by eliminating 4, we can rewrite the 

(33) condition (33) in terms of the wall to bulk 

for the condition to discriminate the large effect 
of acceleration in case of heated flow. At this 
juncture, the modification for the case of high 
Prandtl number introduced in the preceding 
section is considered to be insignificant in the 
present case. Because, in equation (14) which 
represents the shearing stress near the wall, the 
component rg due to gravity has a factor 
[ 1 - (r,/r,)] and is closely related to the thermal 
boundary layer. On the other hand, the com- 
ponent z, due to acceleration has a factor 
[ 1 - (u:/u~ (JJ,/~,)], which was supposed to be 
near unity in deriving equation (15) from equa- 
tion (14), by taking account that I.$/u~ < 1 in 
the momentum boundary layer. 

temperature difference At = tw - t,,, = T, - T, 
= AT. Coming back to equation (6) and using 
equation (36), 

S 
(u)I T (38) z w 

For the case of a perfect gas, using equation (37) 
instead of equation (36), 

S u 4 ao=mJ! (39) 5 w SC,_*, L’ 

From those mentioned about equation (16), the 
heat-transfer coefficient h may be estimated as 
follows on the basis of Dittus-Boelter’s formula; 
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hd 
- = 0.023 
+r 

(40) 

Setting 4, = hAt and using equation (17) for 
zW, q,,,/rW in equations (38) and (39) is calculated 
as 

4 L= 

r 
w 

= 0.581 
c At pr- 0,6g pf 

f 
%I . 

(41) 

According to Reynolds’ analogy, the above 
equation must be reduced to q,,,/r,,, = gcpfAtlum 
for Prf = 1 [19]. Therefore, the numerical 
coefficient and the exponent of Reynolds number 
in equation (41) are considered to be attributed 
to that equations (17) and (40) are empirical 
correlations. Thus the following equation suffices 
to estimate the influence of Prandtl number. 

4 2 = p,.-Mg c At of (42) r I 
W %I 

Substituting this into equation (38) and also 
into equation (39) gives 

? = I(:$). cp,At} PrJ0.6 (43) 

for the general case, and 

S c AT 
a0 = A- ~~-0.6 
r CT * W pm m 

for the particular case of a perfect gas. For 
example, when c = c , PrJ = 1 and Re = 4000, 
equation (46) i”s’ redckd to (AT/T,) > 5.77, 
namely, (TW/T,) 2 6.77. 

3.4 Laminar-flow case; distinctions between 
heated and cooled flows and also between 
upward and downward flows 

Hitherto this chapter dealt with the case 
of turbulent flow. The case of laminar flow can 
be treated more easily, and will be summarized 
in the following. For upward heated laminar 
flow, the basic condition to discriminate the 
large effects of buoyancy and acceleration may 
be given as 

Yr=, G fl 
N 

(47) 

in place of equation (20) for turbulent flow. The 
value of N may range between 2.0 and 3.0. In 
the following calculations, it is assumed that 
N = 3.0. By using equation (19), equation (47) is 
transformed into 

(48) 

If the effects of acceleration and gravity were 
neglected, the wall friction for laminar flow in a 
tube might be given as 

r l6 &2 &!c&‘~ =- 
,+ (u,d/v/) 2g m d 

(49) 

Therefore, in place of equation (25) for turbulent 
flow, we obtain 

for the particular case of a perfect gas. By 
substituting these into equation (30), we obtain 
as the condition to discriminate the large effect 

(l -:)?=(l -$8;;:;;) 

of acceleration in case of heated flow 

Rei Pry’6 $ 246{(i$)mcp,At} (45) 

for the general case, and 

Rei Pry’” < 246&F (46) 
C 
Pm m 

_ 1 
--( 

sC(r, - Yf)IYJd3 
32 v; 

Substituting this into equation (48), we obtain 

GrRe-’ > 32 (51) 

for the condition to discriminate the large effect 
of buoyancy in case of upward heated laminar 
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flow. At this juncture, we need not introduce the 
modification for the effect of Prandtl number 
which was considered in equation (29) because 
the temperature profile for the fully developed 
laminar flow is independent of Prandtl number. 

Next, in place of equation (31) for turbulent 
flow, 

ao _ 1 S 

-5 
u,(du,lW(y,lr,)d3 t 

w v; >( 
Therefore, we obtain 

GraReml 2 32 (53) 

for the condition to discriminate the large effect 
of acceleration in case of heated laminar flow. 
Although the heat-transfer coefficient for fully 
developed laminar flow in tubes is slightly 
different according to the thermal boundary 
conditions [19], it may be estimated approxi- 
mately as 

hd 

zf=4 (54) 

From equations (49) and (54) 

> _ 4($/4At 4 
- = 

A Pr- 1 gc,/t 
* 

(55) 
r 8@/u,,,Id) 2 / ,,, u,,, 

Substituting this into equation (38) and also 
into equation (39) gives 

for the general case, and 

(10 _ l CP, A= S 

5 
w 

- jcrPr;' 
Pm m 

(57) 

for a perfect gas. Substituting these into equation 
(48) we obtain alternative formulas to dis- 
criminate the large effect of acceleration in case 
of heated laminar flow as 

{($m cp, At} 2 2Pr, (58) 

for the general case, and as 

(59) 

for the particular case of a perfect gas. 
Hitherto, we dealt with the case of upward 

heated flow, where. the characteristics of the 
phenomena are most pronounced. Now we 
briefly consider the distinctions between heated 
and cooled flows and also between upward and 
downward flows. The shearing-stress distribu- 
tion near the wall is expressed by equation (15) 
where the values of Sm and also of [l - (y,-/y,)] 
change their signs according to whether heated 
or cooled. Further, the sign attached to the 
buoyancy term changes according to the flow 
direction. Thus the shearing stress near the 
wall may decrease from r,,, in some case, while 
it may increase in another case. When it de- 
creases, the treatment is quite the same as the 
case of upward heated flow mentioned hitherto. 
Therefore, equations (27) (29) and (51) are 
applicable to the case of downward cooled 
flow. On the other hand, when shearing stress 
near the wall increases from z,,,, the basic condi- 
tion to discriminate the large effect may be 
expressed as 

YI=3& s 6, 

for turbulent flow, and as 

(60) 

for laminar flow. In these equati,ons, yr_ 3r, 
represents the point where r amounts to 3r,, 
by linear extrapolation according to the gradient 
of r at the wall. As a result, the conditions to 
discriminate the large effect of buoyancy for the 
case of upward cooled flow and also for that of 
downward heated flow are given as 

2Rey < 1.55 x lo3 Gr (Pr, < 1) (62) 

2Rev < 1.55 x lo3 Gr PrJ0.4 (PrJ I=- 1) (63) 

for turbulent flow, and as 

GrRe-’ 2 112 (64) 
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for laminar flow. In these equations, the Grashof 
number is defined as Gr = g[(yf - y,)/yJ]d3/v: 
so that it may have a positive value. Lastly, as 
for the deceleration effect due to cooling, since 
T, < T, in case of cooling, IAT/7’( = ) (T./T,“) 

11 < 1 is approved. Therefore, from equations 
(44) and (57), ISa&.wl can hardly exceed a unity. 
As a result, neither the condition (60) nor 
condition (61) is satisfied in case of cooling. 
Thus the effect of deceleration due to cooling 
never occurs. 

-Cd) ’ o..490xlo%al/rJh 

3.5 Discussions on available measurements 
Supercritical fluids show very large volume 

changes near their critical temperatures and 
have considerably small kinematic viscosities. 
Thus it is expected that Grashof numbers for 
supercritical fluids come to very large and that 
the effect of buoyancy will become notable 
even for turbulent flow. Jackson and Evans- 
Lutterodt [20] and Shitsman [21] performed 
experiments of heat transfer for supercritical 
fluids in vertical tubes, by using carbon dioxide 
and water respectively. They compared the 
temperature distributions along the test tubes 
in case of upward flow with those in case of 
downward flow, under constant flow rates 
and constant heat fluxes. Their main results 
are reproduced in Figs. 1 and 2. Many anomalous 
phenomena have been observed concerning the 
heat transfer for supercritical fluids and are still 
under lively discussion [22]. However, the 
reason why the temperature distributions show 
such variations as shown in Figs. 1 and 2 
according to the flow directions may be attribut- 
able to the effect of buoyancy. Thereupon, in 
Fig. 3 the experimental conditions in Figs. 1 and 
2 are plotted against Reynolds number and 
Grashof number, and are compared with equa- 
tion (27). It will be seen that equation (27) holds 
fairly good. 

Distance from start of heater, xld 

FIG. 1. Experimental wall temperature measurements for 
supercritical carbon dioxide [20]. p = 77.3 kg/cm’, d = 

18.97 mm, fluid inlet Reynolds number 1.13 x 10s. 

FIG. 2. Experimental wall temperature measurements at 
local bulk enthalpies for supercritical water [21]. 

p = 250 kg/cm*. 
upnow: 

In connection with gas-cooled nuclear reac- 
tors and rocket propulsion systems, Taylor 
[9, 11, 121, DalleDonne and Bowditch [lo], 
McEligot et al. [13], Perkins and Worsoe- 
Schmidt [ 141 and Lel’chuk et al. [ 151 performed 

1. G = 389 kg/m’s, = 3.09 x q, lo5 kcal/m*h 

2. 380 3.09 

3. 386 2.80 
4. 364 3.05 :d=lGmm. 
5. 364 3.16 I/d = 100. 
6. 362 2.94 
7. 382 2.49 1 
8. 375 2.99 :d=8mm, 

l/d = 400. 
Downflow: 

9. G = 390 kg/m%, = 3.14 x q, lo5 kcal/m*h : d= 16 mm, 
l/d= 100. 

10. 354 3.01 :d=8mm, 
I/d = 400. 

As for points A, B, . F, refer to Fig. 3. , 

Upf low 
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experiments of turbulent heat and momentum 
transfer for gases in circular tubes at very high 
wall to bulk temperature ratios, by using air, 
hydrogen, nitrogen, helium and argon as test 
fluids. Among them, Taylor’s data for helium 
were rearranged and are shown in Figs. 4 and 
5. As for the momentum transfer, average friction 
coefficients had been calculated from the meas- 
ured pressure drops between the inlet and the 
outlet of the test tube. The upper part of Fig. 4 
is a plot of the average friction coefficients 
against the average Reynolds numbers for all 
the helium data in [9] and [12]. The line 
f = 16/Re for laminar flow and Blasius’ line 
for turbulent flow are also plotted in the figure. 
The lower part of Fig. 4 is a plot of AT/T, 
= (Tw/Tm) - 1, corresponding to the data in 
the upper part. The condition (46) to discrimin- 
ate the large effect of acceleration in case of 
turbulent flow and also the condition (59) 
in case of laminar flow are also plotted in the 
figure. As for the heat transfer, local heat- 
transfer coefficients had been determined from 
the temperature measurements along the test 
tube. The upper part of Fig. 5 is a plot of the 
local Nusselt numbers against the local Rey- 
nolds numbers for runs 36, 40 and 42 in [12]. 
Dittus-Boelter’s line is also plotted in the figure. 
The lower part of Fig. 5 is the same plot as in 
Fig. 4. 

From Fig. 4, it is approved that when the 
experimental condition comes near the line 
represented by equation (46), the acceleration 
effect becomes prominent and results in a 
considerable increase of friction coefficient as 
explained in section 3.1. In contrast with this, 
from Fig. 5, the acceleration has only a slight 
effect on heat transfer. The reason may be 
explained as follows. The effects of acceleration 
and buoyancy firstly cause a considerable 
increase of the wall friction, which operates to 
decrease the thickness of the laminar sublayer. 
On the other hand, a steep negative gradient of 
shearing stress near the wall is also yielded and 
operates conversely to increase the thickness of 
the laminar sublayer. As a result of these oppos- 

ing actions, the thickness of the laminar sublayer 
remains nearly unchanged from the usual case 
without the effects of acceleration and buoyancy. 

4. TURBULENT BOUNDARY LAYER WITH FLUID- 

PROPERTY AND SHEARING-STRESS VARIATIONS 

4.1 Basic considerations 
From the discussions in the preceding chap- 

ters, a rapid decrease of shearing stress near the 
wall is yielded under the large effects of buoyancy 
and acceleration. At the same time, the fluid 
properties may vary considerably in the bound- 
ary layer. In several literatures [4, 7,8], velocity 
and temperature profiles have been calculated 
for combined free and forced laminar flow in 
vertical circular tubes. As for turbulent flow, 
however, the theory of turbulence is not yet 
well in hand even for adiabatic, fully developed, 
pipe flow. Under these circumstances, the 
authors expect to propose an approximate 
theory to calculate velocity and temperature 
profiles under the large effects of buoyancy 
and acceleration. 

Basic equations for turbulent momentum 
and heat transfer are expressed as 

Y au 
z = (v + Em)--, gay 

q= -(L+yce)K - g+2 p * ay ( a y2. 
pay 

(66) 

At the beginning, the usual theory of turbulent 
heat transfer will be briefly reviewed. By defining 

y+ = JwY)y 
v ’ 

u+ 

= g&y (67) 
a so-called wall law holds true for the velocity 
distribution: 

U+ = 4(Y’). (68) 

From equations (65) and (67), 

(69) 
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Forced flow region 

Free convection region 

IO4 “I I I I I 1 1 III I 

4 6 8108 2 4 6 a 109 2 4 6 8 IO” 2 4 

FIG. 3. Comparison of the prediction of equation (27) for experimental data in Figs. 1 and 2. 

FIG. 4. Average friction coefficients for helium flowing in a 
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FIG. 5. 
a tube tube at very high wall to bulk temperature ratios 19, 121. 

Local heat-transfer coefiicients for helium flowing in 
at verv high wall to bulk temoerature ratios r12). . _ L 
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From equations (68) and (69), the eddy diffusivity 
for momentum is determined as 

E 
-!K- 

1 

V 
- - - 1 = l&J’). 

Wldy + 
(70) 

Usually it is assumed that Pr/ = E,/E, = 1 for 
the turbulent Prandtl number. Then, introduc- 
ing a proper heat-flux distribution into the 
energy equation (66) and integrating yield a 
temperature distribution. 

The authors [l, 23 have been studying the 
turbulent heat transfer to supercritical fluids, 
whose properties vary extremely with tempera- 
ture. The turbulent boundary layer with large 
variation of fluid properties was first studied by 
Deissler [23] and by Goldmann [24] in re- 
spective ways of approach. In [l], the authors 
were incited by Goldmann’s work. His theory 
assumes that the turbulent mixing process at 
any point-that is, the growth and damping 
of turbulent eddies-is a function of the fluid 
properties at that point. Then it is assumed that 
the universal turbulent-velocity profile of equa- 
tion (68) which has been verified for isothermal 
flow, may be used to describe non-isothermal 
flow fields with variable properties, provided 
the velocity and distance parameters are defined 

by 

Y 
++ = s y ds?Jrwl dy 

0 vb) ’ 

U ++ 
= : &7:;lJty)I. t71) s 

Thus, 

U ++ =&y”). (72) 

From equations (65) and (71), the relation quite 
similar to equation (69) is obtained: 

(73) 

Therefore, Goldmann’s assumption is trans- 
lated into an assumption in terms of eddy 
diffusivity; that is, when the dimensionless 
distance is defined as equation (71), the expres- 

sion (70) Ear the distribution of eddy diffusivity 
in the case of constant fluid properties can be 
applied as is to the case of varying fluid propcr- 
ties: 

: = $(y+ ‘). 

As mentioned at the beginning of this section, 
the shearing stress changes considerably in the 
turbulent boundary layer under the large effects 
of buoyancy and acceleration. A similar situa- 
tion happens in case of flow in falling liquid 
films (where the variation of fluid properties 
need not be considered). In such cases, the 
approximation that z + z,,, in the boundary 
layer, which was assumed in deriving equation 
(70) from equation (69), can no longer be applied. 
Thus, the consequent velocity profiles differ 
from each other according to which formula 
we may adopt as the basic wall law from among 
equations (68) and (70). Dukler and Bergelin 
[25], Seban [26] and Rohsenow et al. [27] 
adopted the universal velocity profile (68) 
itself as the basic law and calculated the 
characteristics of flow in falling liquid films. 
On the other hand, Dukler [28] and Davis [29] 
assumed the expression (70) for eddy diffusivity 
to be fundamental and calculated the velocity 
profiles and other characteristics of flow in 
falling liquid films. 

As for the present case where both the shear- 
ing stress and the fluid properties change in the 
boundary layer, the authors assume as follows, 
by combining Goldmann’s theory [24] in case 
of varying fluid properties with Dukler’s theory 
[28] in case of varying shearing stress. Namely, 
the authors assume the expression (70) for eddy 
diffusivity as the basic representation of the 
wall law. Equation (71) due to Goldmann defines 
the distance parameter y++ in case of varying 
fluid properties as an integrated mean value of 
y+ by taking into consideration the variation of 
kinematic viscosity and that of shearing-stress 
velocity (in this case, the variation of shearing- 
stress velocity results only from the density 
variation). When the shearing stress also changes, 
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the authors now define the dimensionless dist- 
ance y* as 

y* = 

s 

y J[&(Y)llY(Y)l dy 
V(Y) 

(75) 
0 

and assume that the expression (70) for eddy 
diffusivity in the case of constant fluid properties 
may be applied as is to the case with fluid-pro- 
perty and shearing-stress variations : 

E 
5 = $(Y*). (76) 

This assumption is easily translated into an 
assumption in terms of velocity profile as follows. 
By making a pair with equation (75), we define 

(77) 

Then, from equations (65). (75) and (77). we 
have the following relation quite similar to 
equation (69). 

Since we assumed for the eddy diffusivity 
equation (76) which has the same form as 
equation (70), integrating equation (78) yields 
the same relation as equation (68) between 
u* and y*; 

u* = $(Y*). 

4.2 Computation procedure 

(79) 

We have obtained equations (65), (66) (75) 
and (76) for the basic equations of the turbulent 
boundary layer with large variations of fluid 
properties and shearing stress. Further, equa- 
tions (4) (5) (8) (9) and (12) hold for the shearing- 
stress distribution. In solving these equations, 
we assume that Pr, = E,/E, = 1 and that 

q=q, l-f 
( > 

for the heat-flux distribution. For the con- 
venience of practising numerical integrations, 
equations (65), (66), (75), (76), (8), (9) and (12) 
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are transformed as follows. 

du P/Y 
dy= v(1 + &JV)’ 

dt - q,(l - Y/R) 
dy = 1 + gjxp (&,/V)’ 

dy* = Jcsl4rl 
dy v ’ 

E 
F=JI(Y*x 

3 
dy 

Z= - 

(81) 

(84 

(83) 

(84) 

(85) 

(86) 

(87) 

In order to calculate the flow rate W and the 
total enthalpy flow rate I simultaneously, we set 

dW’ 
- = 274R - y)yu, 
dY 

dl 
- = 27r(R - y) yui 
dY 

where W’ and I’ represent respectively the flow 
rate and the total enthalpy flow rate across the 
annular section between the radii of R and 
R - y. The equations (81)-(89) constitute a 
system of simultaneous ordinary differential 
equations about u, t, y*, Sa, S,, W’ and I’. When 
the heat flux 4, at the wall, the skin friction z,,,, 
and the wall temperature t, are given, these 
equations can be solved by the following pro- 
cedure. By assuming suitable values for (l/u,) 
x (du,,,/dx) in equation (85) and for (S, + SB,) 
in equation (87), we can integrate the above 
equations numerically under the boundary 
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conditions: 

at the wall. Then we obtain the velocity profile, 
the temperature profile, the flow rate: 

w = W’(y = R), 

the bulk enthalpy: 

(91) 

i,,, = Z’(y = R)/W (92) 

and others. If the assumed values for l/u, du,/dx 
and for (Sa, + S90) are proper, we may have the 
following balances; first, by substituting the 
integrated results into the right-hand side of 
equation (35): 

and second, according to equations (4) and (5): 

S,, + S,, = S‘JY = R) + S&y = R). (94) 

If these balances do not hold, we modify the 
values for (l/u,) (du,/dx) and for (So0 + SBb, in a 
proper manner. Thus we attain to the final solu- 
tion by successive approximations. It will be 
worth while to go into some details of practical 
computations. The initial values for (l/u,) 
x (du,/dx) and for (SaO + SB,) were determined 

from the solution for the case without the 
effects of buoyancy and acceleration, that is, the 
case: r = [l - (y/R)]zw. It follows from equa- 
tion (87) that when the balance (94) does not 
hold the value of r diverges with an order 
R/(R - y) according as y --) R. As mentioned in 
Section 2, however, it is known that the actual 
shearing stress converges linearly to zero. 
Therefore, we interrupted the calculation of r 
from equation (87) at a certain point, and esti- 
mated r by linear interpolation from that point 
to the centre. 

Several expressions have been proposed as 
for the distribution of eddy diffusivity. Which- 
ever expression we may adopt, the computed 
results differ only slightly from one another. 

K 

The authors adopted the following Reichardt’s 
formula [30] in the succeeding section. 

E 
-!rJ = KY,’ 

Y* 
V 

+ - tanhc- itanh3< 
Y” Y,’ 

(95) 

Y” 
where rc = @4 and y,’ = 7.15. The computa- 
tions were performed by HITAC 5020E com- 
puter of the Data Processing Center in the 
University of Tokyo. 

4.3 Comparison between computed and experi- 
mental results 

By the procedure mentioned above, the 
acceleration effect was theoretically calculated 
for the case of turbulent heat and momentum 
transfer for air in a circular tube at large wall to 
bulk temperature ratios. The physical proper- 
ties of air were referred to the appendix of [19]. 
The computed results are illustrated in Figs. 6(a), 
(b) and (c), in the same manner as Figs. 4 and 5. 
As explained in the preceding section, a given 
set of wall temperature t,,,, heat flux q, and 
skin friction r,,, determines a corresponding 
solution. Thus, in Fig. 6, results are shown for 
various wall heat fluxes q, under a constant 
wall temperature of t,,, = 1800°C. Although 
these results for air cannot be compared with 
those in Figs. 4 and 5 for helium in a strict sense, 
similar inclinations are obvious; that is, the 
friction coefficient increases greatly as AT/T, 
comes near to the line of equation (46), while 
the heat-transfer coefficient changes only slightly. 
At this juncture, as AT/T, gets small, the 
convective state draws towards the usual turbu- 
lent convection with constant fluid properties. 
Then the computed results should tend either 
to Blasius’ line or to Dittus-Boelter’s line. In 
Fig. 6, however, the computed values for 
AT/T, + 0 show slight deviations from Blasius’ 
line ‘or Dittus-Boelter’s line according as Rey- 
nolds number comes to small. A ‘non-turbulent 
region’ shown in Fig. 6 (c) will be explained in the 
next section and so will Fig. 6(d). In Fig. 7, the 
distributions of shearing stress, velocity and 
temperature in the tube are shown for the case: 
Re = 6.33 x lo3 and AT/T, = 2.17. 

As for the buoyancy effect, theoretical com- 
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FIG. 6. Computed results of the acceleration effect for air flowing in a tube. p = 1 atm, d = 6 mm, t_ = 1800°C. 

putations were performed for the same conditions 
as Shitsman’s experiments shown in Fig. 2. 
The physical properties of water were referred 
to [31]. The lower part of Fig. 8 shows the 
computed results for wall temperature, and the 
upper part of Fig. 8 shows the results for skin 
friction. As compared with the experimental 
ones in Fig. 2, the computed wall temperatures 
show an opposite tendency dependent on flow 
directions. Thus, the theory is not sufficient to 
estimate heat-transfer coefficients. On the other 
hand, the computed skin friction for upward 
flow reaches to about ten times as large as that 
for downward flow in an extreme case, though 
experimental values are not available. As ex- 
plained in Sections 3.1 and 3.5, the effects of 
buoyancy and acceleration primarily bring 
about a large increase of skin friction, while 
their influence on heat transfer consists of two 
opposing factors (one of which acts to promote, 

and another acts to suppress heat transfer) to 
make itself secondary and difficult to estimate. 
In addition, the property variation of super- 
critical fluid is quite anomalous. The authors 
think that the computed results for heat transfer 
were unsatisfactory for these two reasons. From 
among the results in Fig. 8, Fig 9 demonstrates 
the differences of shearing-stress, velocity and 
temperature distributions between upward and 
downward flows under a constant bulk en- 
thalpy of i,,, = 415 kcal/kg. 

4.4 Reverse transition from turbulent to laminar 

Pow 
Wilson and Pope [32] noted that heat- 

transfer coefficients on the convex side of a 
gas-turbine blade were considerably lower than 
anticipated for a turbulent boundary layer. 
They suggested that acceleration may have 
caused the boundary layer to return from turbu- 
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FIG. 7. An example of theoretical distributions of shearing 
stress, velocity and temperature for air flowing in a tube at a 
very high wall to bulk temperature ratio. p = 1 atm, d = 6 mm, 
tw = 18OO”C, q, = 4.0 x lo5 kcal/m2h, r,,, = 70 N/m2, 
G = 1.10 x 10’ kg/m’s, Re = 6.33 x 103, tm = 38l”C, 

AT/T, = 2.17, GrO = 2.01 x 106,f = 0.0131, Nu = 23.7. 

lent to laminar. This phenomenon of the reverse 
transition has been attracting increasing interest 
in recent years. Many experiments have been 
performed mainly for the case of accelerated 
flows in convergent channels [33-371, and 
partly for the case of highly heated gas flows in 
circular tubes where the flows are accelerated 
by thermal expansion [38, 39). Moretti and 
Kays [33] and Patal and Head [34], by arrang- 
ing their own experiments for convergent 
channels, proposed respective empirical formu- 
las to discriminate the onset of a reverse tran- 
sition. Most of the subsequent literatures have 

followed Moretti’s formula, which claims that 
the reverse transition will take place when a 
dimensionless acceleration parameter K defined 
in the following equation satisfies 

K E _%L” = 3.5 x 10-6. 
uf dx 

(96) 

On the other hand, Patal’s formula claims that 
the transition occurs when a dimensionless 
gradient A, of shearing stress at the wall satisfies 

dz 
A? (Y/g) ;sT&)*ay = - o.oo9* (97) 

Bradshaw [40] considered that in order that a 
boundary layer remains turbulent there shall 

006. 

0.06. 
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Bulk enthalpy.i, , kcal/kg 

FIG. 8. Computed results of the buoyancy effect for the case 
of heat transfer to supercritical water shown in Fig. 2. 
p = 250 kg/cm’, d = 16 mm, G = 380 kg/m*s, q, = 3.09 x 

lo5 kcal/m’h. 
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FIG. 9. Comparison between upward and downward flows 
for shearing-stress, velocity and temperature distributions 
in case of heat transfer to supercritical water. p = 250 kg/cm*, 
d = 16 mm, G = 380 kg/m’s, q, = 3.09 x lo5 kcal/m*h, 
i,,, = 415 kcal/kg; -: upflow, Re = 5.95 x 104, Gr = 
2.82 x log; -----: downflow, Re = 4.19 x lo“, 

Gr = 2.35 x log. 

be some region of the boundary layer where the 
energy containing and dissipating ranges of 
eddy size do not quite overlap. By assuming that 
the reverse transition occurs when this viscosity- 
independent region shrinks and vanishes, he 
argued the critical Reynolds number for usual 
flow in circular tubes and also Patal’s criterion 
mentioned above. Apart from the reverse tran- 
sition due to acceleration, Hall et al. [22, 411 
noticed the local deterioration of heat transfer 
which was observed in the experiments for 
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supercritical fluids performed by themselves 
(see Fig. 1) and also by Shitsman [42]. They 
investigated the shearing-stress distribution near 
the wall by taking the buoyancy force into 
consideration, and explained the deterioration 
of heat transfer by a reduction of turbulence 
energy generation in the turbulent boundary 
layer. 

In this paper, the authors have discussed the 
effects of boyancy and acceleration from a 
somewhat different point of view. Recent studies 
cited above, however, insist that the effects of 
buoyancy and acceleration bring about a reverse 
transition when a certain condition is satisfied. 
Now the authors want to discuss in this relation. 
As for the usual flow in circular tubes, a turbu- 
lent convection appears when Reynolds number 
exceeds 2300. Then the dimensionless distance 
y+ defined by equation (67) has to satisfy 
Re+ = yl =R = J(gr,Jy) R/v 2 150 at the cen- 
tre of the tube. By taking into account that the 
shearing stress decreases linearly to zero at the 
centre, the above relation is converted into the 
relation Re* = ytzR 3 100 in terms of y* 
defined by equation (75). As for the case with 
large variations of fluid properties and of 
shearing stress, it seems natural to assume that 
a turbulent convection is maintained when 

Re* = yF=, = R Jcsl$r) ~ dy 3 100. (98) 
0 

V 

Concerning Fig. 6 in the preceding section, 
computed values of Re* are also plotted in 
Fig. 6 (d). From this figure, a ‘non-turbulent 
region’ shown in Fig. 6 (c) is determined. It is 
expected that a reverse transition may take 
place in the range Re < 4300 when a certain 
heating condition is satisfied. At this juncture, 
it is noticeable that, in the case of flow in circular 
tubes, a factor [l - (u@i) (yr/y,)] in the 
acceleration term and a factor [l - (y,_/y,)] in 
the buoyancy term of equation (14) relate 
closely the shearing-stress distribution with the 
temperature distribution, and that the shearing 
stress may continue to decrease to a fairly large 
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negative value even after it vanishes and changes 
its sign, as shown in Figs. 7 and 9. For this rea- 
son, Re* cannot become effectively small in the 
case of flow in circular tubes, and a reverse 
transition occurs only in the limited region where 
Reynolds number does not largely exceed 2300. 
In contrast with this, it is expected that, in the 
case of accelerated flow in convergent channels, 
the shearing stress never changes its sign even 
if it decreases greatly near the wall, and that Re* 
becomes effectively small to bring about a 
reverse transition even in the region of fairly 
high Reynolds number. 

In order to determine exactly the region where 
condition (98) is satisfied, considerable numerical 
computations are required as explained con- 
cerning Fig. 6. After some considerations, 
however, it is roughly expected that the condition 
Re* = 100 may be well satisfied in the neigh- 
bourhood of the boundary line where the equal 
sign holds in the various formulas in the pre- 
ceding chapter to discriminate the large effects 
of buoyancy and acceleration. At this juncture, 
equation (33) to discriminate the large effect of 
acceleration can be transformed by using Mor- 
etti’s parameter K as 

K 2 6.45 x 1O-4 Re-+F. (9% 
m 

It is noticeable that when Re = 1 x lo5 and 
y, = ys for isothermal accelerated flow, the 
right-hand side of equation (99) amounts to 
8.6 x lo- 6, which fairly agrees with the empirical 
equation (96). Further, Patal’s parameter is 
written as 

(100) 

Then Patal’s formula (97) is proved to insist that 
a reverse transition occurs when 

Y:,O = JC > gzw 
Y,& = & = 111 

Y 

in terms of the authors’ notation. Although this 
value of 111 seems somewhat too large, Patal’s 

formula can ultimately be transformed into an 
equation quite similar (only with a different 
numerical coefficient) to those in the preceding 
chapter. 

In conclusion, the effects of buoyancy and 
acceleration become predominant when the 
formulas obtained in the preceding chapter are 
satisfied. When Reynolds number is not so 
greater than 2300, however, a reverse transition 
from turbulent to laminar flow takes place just 
near where the equal sign in those formulas 
holds. 

5. CONCLUSIONS 

In this paper, the authors discussed the 
shearing-stress distribution in case of forced 
turbulent convection in vertically placed tubes, 
by taking into account the effects of buoyancy 
and of acceleration due to thermal expansion. 
It was proved that the effects of buoyancy and 
of acceleration act quite similarly and result in 
a very rapid decrease of the shearing stress near 
the wall. By considering how the velocity profile 
is affected by the shearing-stress gradient near 
the wall, the authors deduced the formulas (27) 
and (29) to discriminate the large effect of 
buoyancy, and also the formulas (33), (45) and 
(46) to discriminate the large effect of accelera- 
tion. These formulas were compared with the 
available experimental data. It was also proved 
that the effects of buoyancy and acceleration 
primarily bring about a great increase of skin 
friction, while they have only a slight influence 
on heat transfer. Further, the case of laminar 
flow and the distinctions between upward and 
downward flows and also between heated and 
cooled flows were discussed. 

When the effects of buoyancy and acceleration 
become predominant, not only the shearing 
stress but the fluid properties often show 
extreme variations near the wall. The authors 
proposed an approximate theory to calculate 
velocity and temperature profiles under these 
circumstances, by assuming that the turbulent 
boundary layer is constructed by the super- 
position of the locally developed layers. The 
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theoretical results were compared with the 
experimental ones. 

15. 

A phenomenon of a reverse transition from 
turbulent to laminar flow was also considered. 
Based on the above theory, a new criterion of a 
reverse transition was proposed. 
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APPENDIX 

For the case of high speed flow, a relation corresponding 
to equation (38) will be introduced. At this juncture, we have 
to consider the volume change due to pressure drop with 
regard to the continuity equation, and also the kinetic energy 
with regard to the energy equation. For the sake of brevity, 
we deal with a perfect gas and assume that cp = const. As 
basic equations, we first have equation (34) for continuity. 
By substituting equation (6) into the left-hand side and using 
the relation pu, = RT, to rewrite the right-hand side, 
equation (34) is transformed as 

(101) 

Second, the equation of motion (3) is expressed, by using 
equation (4) and neglecting the gravity force, as 

dp 4 
(102) 

Thirdly, the energy equation for steady flow: 

c dT”+Au du,= ndqw 
’ dx g m dx 

; +,,Y,,, 

is transformed. by using equation (6) to rewrite the second 
term on the left-hand side, as 

dT 4A 4q 
c A+-Ss,,=-‘-. 
p dx dy, dYllPm 

(103) 

Substituting equations (102) and (103) into equation (101) 
to eliminate dTm/dx and dp/dx, we obtain 

where AR/s = (K - l)/~, and Mm = [u,,,/,/(KgRTm)] is a 
Mach number. Thus, 

Whence we obtain 

By comparing this with equation (39), we obtain a relation: 

s -=&{(+j_ +4} %v 
(105) 

where (Soo/r,&=,, represents the value of SaO/r, that is 
calculated by assuming equation (39) for low speed flow. By 
the way, when 4, = 0, we have the case of Fanno flow, that 
is, the adiabatic flow with friction [43]. 

EFFETS D’ARCHIMEDE ET D’ACCELERATION DUS A LA DILATATION THERMIQUE 
EN CONVECTION TURBULENTE FOR&E DANS DES TUBES CIRCULAIRES 

VERTICAUX-CRITl?RES DES EFFETS, PROFILS DE VITESSE ET DE TEMPl?RATURE 
ET TRANSITION INVERSE DEPUIS L’ECOULEMENT TURBULENT A L’l?COULEMENT 

LAMINAIRE 

R&m&-On considdre dans cet article le transfert de chaleur et de quantitt de mouvement par turbulence 
pour un fluide ford B travers uh tube vertical. Tout d’abord, les auteurs 6tudient une distribution de 
contrainte tangentielle dans un tube en considkrant la force d’Archimtde ainsi que la force d’intertie dues 
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ii l’acdliration. II est prouvi que les efl’ets de ces deux forces sont semblables et rksultent d’une diminution 
rapide de Ia contrainte tangentielle pr&s de la paroi. La faGon dont le profil de vitesse dtpend du gradient de 
contra&e tangentielle & la paroi a permis aux auteurs de dkduire les critkres pour les effets d’Archim&de et 
d’acctl&ration. IIs proposent enfin un critkre bash sur la thtorie prtc&dente de la transition inverse de 

I’&coulement turbulent a I’&oulement laminaire. 

AUFTRIEBS- UND BESCHLEUNIGUNGSEFFEKTE AUFGRUND VON THERMISCHER 
EXPANSION BE1 ERZWUNGENER TURBULENTER KONVEKTION IN SENKRECHTEN 

kREISFoRMIGEN ROHREN. 
KRITERIEN DER EFFEKTE, GESCHWINDLGKEITS UND TEMPERATUR-PROFILE. UND 

RUCKLiiUFIGER UTBERGANG VON TURBULENTER zu LAMINARER STROMMUNG 

Zusammenfassung-Es werden turbulente WLrmc und Impulsiibertragung fiir ein Fluid, das durch ein 
vertikales Rohr striimt, behandelt. E&ens wird die Scherspannungsverteilung in einem Rohre untersucht 
bei Beticksichtigung von Auftriebs- und Trlgheitskrgften. Es wird gezeigt, dass die Effekte der beiden 
KrLfte sehr Hhnlich in Erscheinung treten und daher ein sehr rascher Abfall der Scherspannung nahe der 
Wand auftritt. Durch Beriicksichtigung der AbhLngigkeit des Geschwindigkeitsprofils vom Scher- 
spannungsgradienten an der Wand leiten die Autoren Kriterien fiir die Einfliisse von Auftrieb und Be- 
schleunigung her. Zweitens wird eine NLherungstheorie vorgeschlagen, fti die Berechnung von Ge- 
schwindigkeits- und Temperaturprofilen unter Einfluss von Auftrieb und Beschleunigung, unter der 
Annahme, dass die turbulente Grenzschichtstrijmung durch Uberlagerung von lokal entwickelten 
Strijmungen gebildet wird. D&tens wird aufgrund der vorgenannten Theorie ein Kriterium fiir den 

riickliiufigen Ubergang von turbulenter zu laminarer Striimung vorgeschlagen. 

BJIBHHIJE IlO~\%tiMHOfl CBJIbl II YCICOPEHIJFI 3A CVfiT TEIIJIOBOI‘O 
PACLUHPEHklH HA BbIHY?KfiEHHYIO TYPBYJIEHTHYIO ICOHBEKLI;MK) B 

BEPTBHAJIbHbIX TPYBAX KPYI’JIOrO CEYEHBFI 

KpIlTepan OueHKn BI~~$EIKT~B nOa'beMHOfi CylJIbI M ycKOpeHHR,npo@ine~ CKOpOCTH 

II TeMnepaTypbI IIO6paTHOI'O nepeXOAa OT Typ6yJIeHTHOrO TeYeHIlR IE JIaMMHapHOMy 

hHHOTaI(tiSI--n CT3Tbe paCCMaTpIlBaeTCH Typ6yJIeHTHbIfi nepeHOC TenJIa II MMIIyJIbCa LW-I 

HEPI~KOCTH, npoKasnsaeMo$i qepea BepTnKanbaylo ~py6y. BO-nepBbIX, clcc~ne~yeTcn pac- 

npenenenae C~BW~BOFO HarIpRxceHaR B Tpy6e c ysi5~0~ nofi%ti~~oti cnnbI, a TaKxe CMJIbI 

knIeprln5i 38 WET ycKopeHws. HoKaaaHo, YTO 3@$eKT AekllBllR 060~~ ClljI BeCbMa CXO?K II 

npllBOALlT Ii OqeHbI 6bICTpOMy yMeHbIIIeHRI0 CABElrOBOrO HanpfIxeHIWI B6JIn3H CTeHKIl. 

c nOMOII(bI0 3aBHCHMOCTPI npO@JIH CKOpOCTLl OT I-p3AIleHTa C;ZBIWOBOrO HaIIpn)f(eHHH Ha 

CTeHKe BbIBO;[HTCJI KpHTepPIPl OCHOBHbIX B@@eKTOB RetiCTBEIR nO@MHOii CIfJIbI I4 yCKOpeHkIH. 

BO-BTOpbIX, 3 npeAnonoHteaki~i, YTO Typ6yJIeHTHbIti nOI'paHI4YHbIi-i CJIOti o6pa3yeTcH 

HaJIOX(eHCIeM JIOKNIbHO pa3RHTbIX CJIOAR, npennaraeTcfI npa6naNeHHafl Teopafx paweTa 

IIpO$JIUIei? CKOPOCTH I4 TeMnepaTypbI B CJIyWe 6OJIbIIIllX 3I$$eKTOB nOA'beMHOti CHJIbI II 

yCKOpeHMX.B-TpeTbElX,HaOCKOBe BbIIIIeyKa33HHOtiTeOpPiEl npeA.TIOmeH KpHTepllfi 06paTHOI'O 

nepeXOxa OT Typ6yJIeHTHOrO TeYeHMFI K JIaMRHapHOMy. 


